Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Glob Epidemiol ; 4: 100094, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2104972

ABSTRACT

We simulate the impact of school reopening during the COVID-19 pandemic in three major urban centers in Brazil to identify the epidemiological indicators and the best timing for the return of in-school activities and the effect of contact tracing as a mitigation measure. Our goal is to offer guidelines for evidence-based policymaking. We implement an extended SEIR model stratified by age and considering contact networks in different settings - school, home, work, and community, in which the infection transmission rate is affected by various intervention measures. After fitting epidemiological and demographic data, we simulate scenarios with increasing school transmission due to school reopening, and also estimate the number of hospitalization and deaths averted by the implementation of contact tracing. Reopening schools results in a non-linear increase in reported COVID-19 cases and deaths, which is highly dependent on infection and disease incidence at the time of reopening. When contact tracing and quarantining are restricted to school and home settings, a large number of daily tests is required to produce significant effects in reducing the total number of hospitalizations and deaths. Policymakers should carefully consider the epidemiological context and timing regarding the implementation of school closure and return of in-person school activities. While contact tracing strategies prevent new infections within school environments, they alone are not sufficient to avoid significant impacts on community transmission.

2.
Front Public Health ; 9: 651089, 2021.
Article in English | MEDLINE | ID: covidwho-1207795

ABSTRACT

The response of the scientific community to the COVID-19 pandemic has been unprecedented in size, speed and discovery output. Within months of virus emergence, the SARS-CoV-2 genomics, replication, evolution and dissemination dynamics as well as natural history, infection risk and prognostic factors and biology of the disease have been gradually deciphered. More than 250 articles on COVID-19 published in Frontiers in Public Health have contributed to these insights. We discuss here some of the key research themes and challenges that have been addressed. We provide our perspective on current research issues with surveillance data quality and limitations of epidemiological methods. We warn against the potential misuse or misleading interpretation of public data of variable quality and the use of inadequate study designs for the evaluation of effect of non-pharmaceutical interventions. We conclude by interrogating possible public health strategies for pandemic control as well as discuss the ethical responsibilities and democratic accountability of researchers in their role as experts and policy advisors.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2
3.
Comput Biol Med ; 121: 103827, 2020 06.
Article in English | MEDLINE | ID: covidwho-380456

ABSTRACT

The rapid spread of the coronavirus disease (COVID-19) has become a global threat affecting almost all countries in the world. As countries reach the infection peak, it is planned to return to a new normal under different coexistence conditions in order to reduce the economic effects produced by the total or partial closure of companies, universities, shops, etc. Under such circumstances, the use of mathematical models to evaluate the transmission risk of COVID-19 in various facilities represents an important tool in assisting authorities to make informed decisions. On the other hand, agent-based modeling is a relatively new approach to model complex systems composed of agents whose behavior is described using simple rules. Different from classical mathematical models (which consider a homogenous population), agent-based approaches model individuals with distinct characteristics and provide more realistic results. In this paper, an agent-based model to evaluate the COVID-19 transmission risks in facilities is presented. The proposed scheme has been designed to simulate the spatiotemporal transmission process. In the model, simulated agents make decisions depending on the programmed rules. Such rules correspond to spatial patterns and infection conditions under which agents interact to characterize the transmission process. The model also includes an individual profile for each agent, which defines its main social characteristics and health conditions used during its interactions. In general, this profile partially determines the behavior of the agent during its interactions with other individuals. Several hypothetical scenarios have been considered to show the performance of the proposed model. Experimental results have demonstrated that the simulations provide useful information to produce strategies for reducing the transmission risks of COVID-19 within the facilities.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Systems Analysis , COVID-19 , Computational Biology , Computer Simulation , Coronavirus Infections/epidemiology , Disease Susceptibility/epidemiology , Health Behavior , Health Facilities , Humans , Models, Biological , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Population Dynamics/statistics & numerical data , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL